United Chemical Technologies (UCT) product guide #### **CLEAN SCREEN®** Drugs of Abuse Columns - DAU = Acidic, Basic & Neutral Drugs - THC = Carboxy THC - THCA = THC Δ9 Carboxylic Acid - GHB = Gamma-Hydroxybutyrate - ETG = Ethyl Glucuronide - BNZ = Benzodiazepine - CLEAN-THRU® Tips #### CLEAN-UP® Solid Phase Extraction Columns - Ion Exchange - Hydrophobic - Hydrophilic - Copolymeric - Covalent #### STYRE SCREEN® Polymeric Based Columns - DBX = Copolymeric - DVB = Divinylbenzene - BCX = Benzenesulfonic Acid - C18 = Octadecyl C18 - CCX = Carboxylic Acid - QAX = Quaternary Amine #### **ENVIRO-CLEAN®** - Products - Environmental SPE Cartridge - SPE Inert Glass Syringe Barrels **UCT** product guide #### First of its kind in the field of forensic and clinical toxicology! The recently published Forensic and Clinical Applications of Solid Phase Extraction, by Michael J. Telepchak, Thomas August and Glynn Chaney, has been met with enthusiasm by those in the SPE field, and has been recommended as a valuable laboratory reference. Dr. Terry Danielson, Ph.D., who reviewed the book for the American Society of Crime Laboratory Directors, calls attention to the "extensive details of many currently available SPE separation procedures", and describes the book as a convenient compendium of SPE technology, and is relevant to the development, implementation and practice of modern SPE appropriate to students, and experienced practitioners." In the Canadian Society of Forensic Science Journal, Dr. Karen Woodall, Ph.D., of the Toronto Centre of Forensic Sciences, calls the book a "must read" for anyone interested in SPE, especially helpful in resolving the day-to-day problems that can occur when using [SPE] and gives some excellent examples of how to deal with some of these occurrences such as recovery variability, contamination, flow, and non-extraction problems." BOOK "FORENSIC AND CLINICAL APPLICATIONS OF SOLID PHASE EXTRACTION" P/N: ZZ3801 #### Reservoirs for Bonded Phase Extractions | Stated Volume (mL) | Tube Configuration | Bed Diameter (mm) | Sorbent Mass (mg) | |--------------------|--------------------|-------------------|-------------------| | 1 | Cylindrical | 5.5 | 50-200 | | 3 | Cylindrical | 8.5 | 50-1000 | | 6 | Cylindrical | 12.5 | 200-2000 | | 10 | Expanded | 8.5 | 50-1000 | | 15 | Cylindrical | 15.5 | 500-2000 | | 25 | Cylindrical | 20 | 500-5000 | | 75 | Cylindrical | 27.5 | 1000-10000 | | 150 | Cylindrical | 38.0 | 10000-70000 | **UCT Clean Screen® columns** ## Copolymeric bonded phases for drug abuse testing Analytical demand for more efficient, robust and clean extraction of drugs from biological matrices led to the development of Clean Screen® sorbents. Since 1986, Clean Screen® has led the industry with dependable and reproducible Solid Phase Extraction products and applications. Clean Screen phases are true copolymeric sorbents that contain hydrophobic and ion exchange functional groups uniquely polymerized to a silica substrate. The design and quality of Clean Screen provides superior sample clean up, recovery and reproducibility. Mixed mode separations allow maximum selectivity for extraction of acids, neutrals and bases. This selectivity makes Clean Screen ideal for both screening and confirmation analysis for virtually all drug categories. Clean Screen DAU, THC, and GHB columns are used extensively by forensic and clinical chemists including: - Post Mortem Investigations - · Criminal Investigations - Urine Drug Testing - Athletic Drug Testing - Racing Laboratories - . Therapeutic Drug Monitoring - · Medical Drug Screening Recent additions to this product line include Clean Screen® Ethyl Glucuronide and Clean Screen® Benzodiazepines. #### Mechanism of Clean Screen® Carboxylic acid functionalities present in the sample are ionized. This creates a repulsion between the column and many sample borne interferences, thereby reducing the likelihood of their adsorbing onto the column. At this pH, ibuprofen & barbiturates are not ionized and are hydrophobically adsorbed onto the column (figure 1). At the same time, drugs with amine functionalities such as cocaine and phencyclidine adsorb onto the column via both hydrophobic and ionic attraction (fig. 1). The column can then be washed with water or weak aqueous buffers at or below pH 6 without risking loss of the analytes. After drying the column, it is possible to elute the hydrophobically bound analytes using solvents of minimal polarity such as methylene chloride or a hexane/ethyl acetate mixture (fig. 2). Cationic analytes will remain bound to the column. Many compounds of intermediate polarity and potential interferences will also remain on the column. The majority of these potential interferences can be removed by using a methanol wash. # The state of ## Sample Prep - Solid Phase Extraction #### **UCT Clean Screen® columns** Cationic analytes bound to the column can be eluted after another drying step. The drying steps are necessary to remove water which would have prevented the waterimmiscible elution solvents from optimally interacting with the analytes (fig. 3). $$C_nH_{2n+1}$$ C_1H_{2n} C_2 C_3 C_4 $C_$ To elute the cationic analytes, an organic solution with a high pH (between 11 & 12) should be used. A methylene chloride isopropanolammonium hydroxide mixture will simultaneously disrupt these ionic interactions and successfully elute the desired compound (fig. 4). # Elution 2 C,H₂₋₁ (fig. 4) #### Clean Screen® DAU This column is copolymerized on a rigid, purified silica gel support. The two functional groups include a reverse phase, and an ion exchanger, benzenesulfonic acid. This column is commonly used for analyzing a wide range of drugs of abuse, including acidic, basic & neutral drugs. **Application**: Dual functionality for weak bases and hydrophobic compounds. | P/N | Weight /Vol. | Qty | |----------|--------------|-----| | CSDAU131 | 130 mg/1 mL | 100 | | CSDAU133 | 130 mg/3 mL | 50 | | CSDAU203 | 200 mg/3 mL | 50 | | CSDAU303 | 300 mg/3 mL | 50 | | CSDAU503 | 500 mg/3 mL | 50 | | CSDAU206 | 200 mg/6 mL | 50 | | CSDAU506 | 500 mg/6 mL | 50 | | CSDAU1M6 | 1 g/6 mL | 30 | | ZSDAU005 | 50 mg/10 mL | 50 | | ZSDAU013 | 130 mg/10 mL | 50 | | ZSDAU020 | 200 mg/10 mL | 50 | | CSDAU515 | 500 mg/15 mL | 50 | #### Clean Screen® THC This column is copolymerized on a rigid, purified silica gel support. The two functional groups include a reverse phase, and an ion exchanger, primary amine. This column is commonly used for analyzing THC and its metabolites. **Application:** Dual functionality for acids and hydrophobic compounds. | P/N | Weight /Vol. | Qty | |----------|--------------|-----| | CSTHC131 | 130 mg/1 mL | 100 | | CSTHC203 | 200 mg/3 mL | 50 | | CSTHC303 | 300 mg/3 mL | 50 | | CSTHC503 | 500 mg/3 mL | 50 | | CSTHC206 | 200 mg/6 mL | 50 | | CSTHC506 | 500 mg/6 mL | 50 | | CSTHC1M6 | 1 g/6 mL | 30 | | ZSTHC013 | 130 mg/10 mL | 50 | | ZSTHC020 | 200 mg/10 mL | 50 | | CSTHC515 | 500 mg/15 mL | 50 | | | | | ## Clean Screen® GHB The small polar nature of the molecule and the lack of a UV chromatophore complicate the chromatographic and spectrophotometric analysis of GHB. Chemically, GHB is unstable and readily forms Gamma-butyrolactone when heated in acid conditions. Most analytical methods are based upon the interconversion to the lactone and chemical derivatization to form the TMS derivative. This column is for the extraction of free GHB. | P/N | Weight /Vol. | Qty | |----------|--------------|-----| | CSGHB203 | 200 mg/3 mL | 50 | | ZSGHB020 | 200 mg/10 mL | 50 | | ZCGHB020 | 200 mg/10 mL | 50 | **UCT Clean-Up® columns** ## **Hydrophobic Extraction Columns** This sorbent is composed of a silica backbone bonded with hydrocarbon chains. It is used to extract compounds which exhibit non-polar or neutral characteristics out of complex matrices. The C18 phase is the most widely used for non-polar interactions because of its nonselective nature; C18 will extract a large number of compounds with differing chemical properties. To enchance selectivity, UCT offers a wide range of hydrophobic sorbents, from C2 to C20. Multiple chain configurations are available for some sorbents. Endcapped or unendcapped sorbents are available for all chain lengths. Compounds are retained by non-polar interactions from polar solvents or matrix environments. They are bound by dispersion forces / van der Waals forces. Elution, or disruption of the non-polar interactions is achieved by solvents or solvent mixtures with sufficient non-polar character. Some polar solvents, such as acetonitrile have enough non-polar characteristics to disrupt non-polar binding to cause elution of a compound from the sorbent. Methanol can be used as well, although it should be noted that it will take off both polar & non-polar analytes of interest & interferences. ## **Unendcapped vs. Endcapped** Bonded phases are manufactured by the reaction of organosilanes with activated silica. During the polymerization reaction of carbon chains to the silica backbone, a very stable silyl ether linkage forms. Our unendcapped columns allow hydroxyl sites to remain, thus making these columns slightly hydrophilic. In order to decrease this slight polarity, these hydroxyl sites are deactivated. Proprietary bonding techniques ensure that these sites are 100% reacted, leading to a complete endcapping. Because there are no hydroxyl sites left, our endcapped columns are more hydrophobic than our unendcapped columns. #### **Example of Hydrophobic Bonding** ## Functionalized hydrophobic silica based phases | Sorbent | Product code | Structure | % Carbon | |--------------------|--------------|----------------|------------| | | | | | | C2 ethyl | C02 | -SiCH2CH3 | 6.60 | | C3 propyl | C03 | -Si-(CH2)2CH3 | 7.60 | | C4 n-butyl | Cn4 | -Si-(CH2)3CH3 | 8.50 | | Ci4 isobutyl | Ci4 | -Si-CH2CH(CH3) | 8.80 | | Ct4 tertiary butyl | Ct4 | -Si-C(CH3)3 | 8.50 | | C5 pentyl | C05 | -Si-(CH2)4CH3 | 9.50 | | C6 hexyl | C06 |
-Si-(CH2)5CH3 | 11.00 | | C7 heptyl | C07 | -Si-(CH2)6CH3 | 11.00 | | C8 octyl | C08 | -Si-(CH2)7CH3 | 11.10 | | C10 decyl | C10 | -Si-(CH2)9CH3 | 15.70 | | C12 dodecyl | C12 | -Si-(CH2)11CH3 | not tested | | C18 octadecyl | C18 | -Si-(CH2)17CH3 | 21.70 | | C20 eicosyl | C20 | -Si-(CH2)19CH3 | 24.30 | | C30 tricontyl | C30 | -Si-(CH2)29CH3 | 26.00 | | Cyclohexyl | CYH1 | -Si-(CH) | 11.60 | | Phenyl | PHY1 | -Si-(PH) | 11.00 | ## **UCT Clean-Up® columns** | Weight/Vol. | Sorbent | Endcapped | Unendcapped | Sorbent | Endcapped | Unendcapped | Sorbent | Endcapped | Unendcapped | Qty | |---|------------|--|---|--------------|--|--|------------|--|--|--| | 50mg/1mL
100mg/1mL
100mg/3mL
200mg/3mL
500mg/3mL
500mg/6mL
1g/6mL
100mg/10mL
200mg/10mL
500mg/10mL | C2, Ethyl | CEC021L1
CEC02111
CEC02113
CEC02123
CEC02153
CEC02156
CEC021M6
CEC0211Z
CEC0212Z
CEC0215Z | CUC021L1
CUC02111
CUC02113
CUC02123
CUC02153
CUC02156
CUC021M6
CUC0211Z
CUC0212Z
CUC0215Z | C4, n-Butyl* | CECN41L1 CECN4113 CECN4123 CECN4153 CECN4156 CECN41M6 CECN411Z CECN412Z CECN415Z | CUCN41L1
CUCN4111
CUCN4113
CUCN4123
CUCN4153
CUCN4156
CUCN41M6
CUCN411Z
CUCN412Z
CUCN415Z | C6, Hexyl | CEC061L1
CEC06111
CEC06113
CEC06123
CEC06153
CEC06156
CEC061M6
CEC0611Z
CEC0612Z
CEC0615Z | CUC061L1
CUC06111
CUC06113
CUC06123
CUC06153
CUC06156
CUC061M6
CUC0611Z
CUC0612Z
CUC0615Z | 100
100
50
50
50
50
50
30
50
50 | | 50mg/1mL
100mg/1mL
100mg/3mL
200mg/3mL
500mg/3mL
500mg/6mL
1g/6mL
100mg/10mL
200mg/10mL
500mg/10mL | C3, Propyl | CECN31L1
CECN3111
CECN3113
CECN3123
CECN3153
CECN3156
CECN3117
CECN311Z
CECN312Z
CECN315Z | CUCN31L1
CUCN3111
CUCN3113
CUCN3123
CUCN3153
CUCN3156
CUCN311M6
CUCN311Z
CUCN311Z
CUCN312Z
CUCN315Z | C5, Pentyl | CEC051L1
CEC05111
CEC05113
CEC05123
CEC05153
CEC05156
CEC05116
CEC0511Z
CEC0512Z
CEC0515Z | CUC051L1
CUC05111
CUC05113
CUC05123
CUC05153
CUC05156
CUC051M6
CUC0511Z
CUC0511Z
CUC0515Z | C7, Heptyl | CEC071L1
CEC07111
CEC07113
CEC07123
CEC07153
CEC07156
CEC07117
CEC0711Z
CEC0712Z
CEC0715Z | CUC071L1
CUC07111
CUC07113
CUC07123
CUC07153
CUC07156
CUC071M6
CUC0711Z
CUC0712Z
CUC0715Z | 100
100
50
50
50
50
50
30
50
50 | ^{*}Available on request C4 Isobutyl and C4 Tertiary Butyl | Weight/Vol. | Sorbent | Endcapped | Unendcapped | Sorbent | Endcapped | Unendcapped | Sorbent | Endcapped | Unendcapped | Qty | |--|------------|--|--|-------------------|--|--|------------|---|--|--| | 50mg/1mL
100mg/1mL
100mg/3mL
200mg/3mL | C8, Octyl | CEC081L1
CEC08111
CEC08113
CEC08123 | CUC081L1
CUC08111
CUC08113
CUC08123 | C12,
nDodecyl | CEC121L1
CEC12111
CEC12113
CEC12123 | CUC121L1
CUC12111
CUC12113
CUC12123 | Cyclohexyl | CECYH1L1
CECYH111
CECYH113
CECYH123 | CUCYH1L1
CUCYH111
CUCYH113
CUCYH123 | 100
100
50
50 | | 500mg/3mL | | CEC08153 | CUC08153 | | CEC12153 | CUC12153 | | CECYH153 | CUCYH153 | 50 | | 500mg/6mL
1g/6mL
100mg/10mL
200mg/10mL
500mg/10mL | | CEC08156
CEC081M6
CEC0811Z
CEC0812Z
CEC0815Z | CUC08156
CUC081M6
CUC0811Z
CUC0812Z
CUC0815Z | | CEC12156
CEC121M6
CEC1211Z
CEC1212Z
CEC1215Z | CUC12156
CUC121M6
CUC1211Z
CUC1212Z
CUC1215Z | | CECYH156
CECYH1M6
CECYH11Z
CECYH12Z
CECYH15Z | CUCYH156
CUCYH1M6
CUCYH11Z
CUCYH12Z
CUCYH15Z | 50
30
50
50
50 | | 50mg/1mL
100mg/1mL
100mg/3mL
200mg/3mL
500mg/6mL
1g/6mL
100mg/10mL
200mg/10mL
500mg/10mL | C10, nDecy | CEC101L1
CEC10111
CEC10113
CEC10123
CEC10153
CEC10156
CEC101M6
CEC1011Z
CEC1012Z
CEC1015Z | CUC101L1
CUC10111
CUC10113
CUC10123
CUC10153
CUC10156
CUC101M6
CUC1011Z
CUC1011Z
CUC1012Z
CUC1015Z | C18,
Octadecyl | CEC181L1
CEC18113
CEC18123
CEC18153
CEC18156
CEC181M6
CEC1811Z
CEC1812Z
CEC1815Z | CUC181L1
CUC18111
CUC18113
CUC18123
CUC18153
CUC18156
CUC181M6
CUC1811Z
CUC1812Z | Phenyl | CEPHY1L1 CEPHY111 n.a. CEPHY123 CEPHY153 CEPHY156 CEPHY1M6 CEPHY11Z CEPHY12Z CEPHY15Z | CUPHY1L1
CUPHY111
n.a.
CUPHY123
CUPHY153
CUPHY156
CUPHY1M6
CUPHY11Z
CUPHY12Z
CUPHY15Z | 100
100
50
50
50
50
50
50
50
50 | **UCT Clean-Up® columns** ## **Hydrophilic Normal Phase Columns** This sorbent is composed of a silica backbone bonded with carbon chains containing polar functional groups. Groups which will possess such polarity include amines, hydroxyls and carbonyls. #### Functionalized hydrophilic silica based phases | Sorbent | Product code | Structure | % Carbon | |------------------|--------------|-------------------------|----------| | Silica | SIL1 | -SiOH | N/A | | Diol | DOL1 | -Si-(CH2)3OCH2CHOHCH2OH | 8.00 | | Cyanopropyl | CNP1 | -Si-(CH2)3CN | 6.90 | | Florisil® | FLS | | N/A | | Alumina, Acidic | ALA | | N/A | | Alumina, Neutral | ALN | | N/A | | Alumina, Basic | ALB | | N/A | | Carbon | CARB | | N/A | ## Mechanism of hydrophilic bonding Compounds are retained on hydrophilic sorbents through polar interactions including hydrogen bonding, pi-pi or dipole-dipole interaction. These types of interactions occur when a distribution of electrons between individual atoms in functional groups is unequal, causing negative and positive polarity. Compounds typically extracted on a hydrophilic column include analytes which have polar groups, including amines, hydroxyls and carbonyls. Elution is performed by strong polar solvents. Example of Hydrophilic Bonding | Weight /Vol. | Sorbent | P/N | Sorbent | P/N | Sorbent | P/N | Sorbent | P/N | Qty | |--|---------------------|---|---------------------------------|--|-----------------------------------|--|-------------------|--|--| | 50mg/1mL
100mg/1mL
200mg/3mL
500mg/3mL
500mg/6mL
1g/6mL
100mg/10mL
200mg/10mL
500mg/10mL | Unbonded
Silica | CUSIL1L1 CUSIL111 CUSIL123 CUSIL153 CUSIL156 CUSIL1M6 CUSIL11Z CUSIL11Z CUSIL12Z CUSIL15Z | Florisil [®] | CUFLS1L1
CUFLS111
CUFLS123
CUFLS153
CUFLS156
CUFLS1M6
CUFLS11Z
CUFLS11Z
CUFLS15Z | Alumina,
Acidic | CUALA1L1 CUALA123 CUALA153 CUALA156 CUALA1M6 CUALA11Z CUALA11Z CUALA12Z CUALA15Z | Alumina,
Basic | CUALB1L1
CUALB111
CUALB123
CUALB153
CUALB156
CUALB1M6
CUALB11Z
CUALB12Z
CUALB15Z | 100
100
50
50
50
30
50
50
50 | | 50mg/1mL
100mg/1mL
200mg/3mL
500mg/3mL
500mg/6mL
1g/6mL
100mg/10mL
200mg/10mL
500mg/10mL | Alumina,
neutral | CUALN1L1 CUALN111 CUALN123 CUALN153 CUALN156 CUALN1M6 CUALN11Z CUALN11Z CUALN12Z CUALN15Z | CN,
Cyanopropyl
Endcapped | CECNP1L1 CECNP111 CECNP123 CECNP153 CECNP156 CECNP1M6 CECNP11Z CECNP12Z CECNP15Z | CN,
Cyanopropyl
Unendcapped | CUCNP1L1
CUCNP111
CUCNP123
CUCNP153
CUCNP156
CUCNP1M6
CUCNP11Z
CUCNP12Z
CUCNP15Z | Diol | CUDOL1L1 CUDOL111 CUDOL123 CUDOL153 CUDOL156 CUDOL1M6 CUDOL11Z CUDOL12Z CUDOL15Z | 100
100
50
50
50
30
50
50 | ## **UCT Clean-Up® columns** ## Ion Exchange extraction columns This sorbent is composed of a silica backbone bonded with a carbon chain terminated by a negatively or positively charged functional group. Ion exchange interactions occur between a sorbent that carries a charge and a compound of opposite charge. This electrostatic interaction is
reversible by neutralizing the sorbent and/or analyte. Ion exchange bonds can also be disrupted by introduction of a "counter ion" to compete with the analyte for binding sites on the sorbent. | Sorbent | Code | Structure | Pka | % Carbon | meq /g | |--------------------------------|--------|----------------------------|----------------|----------|--------| | Aminopropyl (1° amine) | NAX1 | -Si-(CH2)3NH2 | 9.8 | 6.65 | 0.310 | | N-2 Aminoethyl (1° & 2° amine) | PSA1 | -Si-(CH2)3NH(CH2)2NH2 | 10.1, 10.9 | 9.70 | 0.320 | | Diethylamino (3° amine) | DAX1 | -Si-(CH2)3N(CH2CH3)2 | 10.6 | 8.40 | 0.280 | | Quaternary Amine Chloride | QAX1 | -Si-(CH2)3N+(CH3)3 Cl- | always charged | 8.40 | 0.250 | | Quaternary Amine Hydroxide | CHQAX1 | -Si-(CH2)3N+(CH3)3 CH3CO2- | always charged | 8.40 | 0.250 | | Quaternary Amine Acetate | CAQAX1 | -Si-(CH2)3N+(CH3)3 OH- | always charged | 8.40 | 0.250 | | Quaternary Amine Formate | CFQAX1 | -Si-(CH2)3N+(CH3)3 CHO2- | always charged | 8.40 | 0.250 | | Cation Exchange | | | | | | | Carboxylic Acid | CCX1 | -Si-CH2COOH | 4.8 | 9.10 | 0.170 | | Propylsulfonic Acid | PCX1 | -Si-(CH2)3SO3H | <1 | 7.10 | 0.180 | | Benzenesulfonic Acid | BCX1 | -Si-(CH2)2-(PH)-SO3H | always charged | 11.00 | 0.320 | | Benzenesulfonic Acid High Load | BCXHL1 | -Si-(CH2)2-(PH)-SO3H | always charged | 15.00 | 0.650 | #### Mechanism of Ion Exchange bonding Compounds are retained on the sorbent through ionic bonds. Therefore, it is essential that the sorbent and the analyte to be extracted are charged. Generally, the number of molecules with charged cationic groups increases at pH values below the molecules pKa value. The number of molecules with charged anionic groups decreases at pH values below the molecule's pKa value. To ensure 99% or more ionization, the pH should be at least two pH units below the pKa of the cation and two pH units above the pKa of the anion. Elution occurs by using a solvent to raise the pH above the pKa of the cationic group or to lower the pH below the pKa of the anion to disrupt retention. At this point, the sorbent or compound will be neutralized. | Weight /Vol. | Sorbent | P/N | Sorbent | P/N | Sorbent | P/N | Sorbent | P/N | Qty | |--|--------------------|--|----------------------------|--|-------------------------------|--|---|---|--| | 50mg/1mL
100mg/1mL
200mg/3mL
500mg/3mL
500mg/6mL
1g/6mL
100mg/10mL
200mg/10mL
500mg/10mL | Aminopropyl | CUNAX1L1
CUNAX111
CUNAX123
CUNAX153
CUNAX156
CUNAX1M6
CUNAX11Z
CUNAX12Z
CUNAX15Z | "PSA
N-2 Aminoethyl" | CUPSA1L1
CUPSA111
CUPSA123
CUPSA153
CUPSA156
CUPSA1M6
CUPSA11Z
CUPSA12Z
CUPSA15Z | Diethylamino | CUDAX1L1 CUDAX111 CUDAX123 CUDAX153 CUDAX156 CUDAX1M6 CUDAX11Z CUDAX12Z CUDAX15Z | "Quaternary
Amine
with Chloride
Counter Ion**" | CUQAX1L1
CUQAX111
CUQAX123
CUQAX153
CUQAX156
CUQAX1M6
CUQAX11Z
CUQAX12Z
CUQAX12Z | 100
100
50
50
50
50
30
50
50
50 | | 50mg/1mL
100mg/1mL
200mg/3mL
500mg/3mL
500mg/6mL
1g/6mL
100mg/10mL
200mg/10mL
500mg/10mL | Carboxylic
Acid | CUCCX1L1 CUCCX111 CUCCX123 CUCCX153 CUCCX156 CUCCX1M6 CUCCX11Z CUCCX12Z CUCCX15Z | Propyl
sulfonic
Acid | CUPCX1L1 CUPCX111 CUPCX123 CUPCX153 CUPCX156 CUPCX1M6 CUPCX11Z CUPCX12Z CUPCX15Z | Benzene-
-sulfonic
Acid | CUBCX1L1 CUBCX111 CUBCX123 CUBCX153 CUBCX156 CUBCX1M6 CUBCX11Z CUBCX12Z CUBCX15Z | Benzenesulfonic
Acid High
Load | CUBCX1H1L1 CUBCX1HL11 CUBCX1HL23 CUBCX1HL53 CUBCX1HL56 CUBCX1HLM6 CUBCX1HLM2 CUBCX1HL12 CUBCX1HL2Z CUBCX1HL5Z | 100
100
50
50
50
50
30
50
50 | ^{**}Available with Acetate , Hydroxide & Formate Counter Ion **UCT Clean-Up® columns** ## **Copolymeric Extraction columns** (ion Exchange + hydrophobicity) This sorbent is composed of a silica backbone with two types of functional chains attached - an ion exchanger or polar chain and a hydrophobic carbon chain. Our copolymeric phases are produced in a way to allow for equal parts of each functional group to attach to the silica backbone. This copolymerization technique yields reproducible bonded phases and unique copolymeric chemistries which allow the controlled use of mixed mode separation mechanisms. This type of dual chemistry is beneficial especially when one is looking for both a neutral & charged compound. This is common when a neutral parent drug metabolizes and becomes a charged compound. #### Functionalized mixed mode silica based phases | Sorbent | Product code | Structure | % Carbon | meq/g | |---------------------------|--------------|--------------------------------------|----------|-------| | Aminopropyl + C8 | NAX2 | -Si-(CH2)3NH2 & -Si-(CH2)7CH3 | 12.3 | 0.163 | | Quaternary Amine + C8 | QAX2 | -Si-(CH2)3N+(CH3)3 & -Si-(CH2)7CH3 | 13.60 | 0.160 | | Carboxylic Acid + C8 | CCX2 | -Si-CH2COOH & -Si-(CH2)7CH3 | 12.50 | 0.105 | | Propylsulfonic Acid + C8 | PCX2 | -Si-(CH2)3SO3H & -Si-(CH2)7CH3 | 14.62 | 0.114 | | Benzenesulfonic Acid + C8 | BCX2 | -Si-(CH2)2-(PH)-SO3H & -Si-(CH2)7CH3 | 12.30 | 0.072 | | Cyanopropyl + C8 | CNP2 | -Si-(CH2)3CN & -Si-(CH2)7CH3 | 14.60 | 0.163 | | Cyclohexyl + C8 | CYH2 | -Si-(PH) & -Si-(CH2)7CH3 | N/A | N/A | ## Example of Copolymeric Bonding ## Mechanism of mixed mode bonding Using a sample composed of a theoretical neutral parent drug and its charged (acidic) metabolite, it is applied at a pH of 6 (figure 1). At this pH, many amine groups are positively charged. Since the column is also positively charged, compounds with this chemistry (cations) are repelled. Depending on the pKa of the metabolite, carboxylic acid groups may be negatively charged, allowing the metabolite to bond to the positively charged sorbent. Since the column also possesses a hydrophobic chain, the neutral parent drug also bonds to the column. Water or a weak aqueous buffer (pH6) washes away hydrophilically bound interferences (figure 2). The column is then dried, careful to free the column of any residual aqueous phase that would interfere with elution. ## UCT Clean-Up® columns Elution 1 (Figure 3) The hydrophobically bound neutral parent drug is eluted with a solvent of minimal polarity, such as hexane/ ethyl acetate - 80:20. Elution 2 (Figure 4) The final elution employs an acid to neutralize the charge of acidic analytes. Ionic interaction is released, and analytes are eluted in an appropriate solvent mixture. | Parer | | |-------|--| | | | | | | | Weight /Vol. | Sorbent | P/N | Sorbent | P/N | Sorbent | P/N | Sorbent | P/N | Qty | |--|---|--|---|--|--|--|--|--|--| | 50 mg/1 mL
100 mg/1 mL
200 mg/3 mL
500 mg/3 mL
500 mg/6 mL
1 g/6 mL
100 mg/10 mL
200 mg/10 mL
500 mg/10 mL | Hydrophobic
plus
Propylsulfonic
Acid | CUPCX2L1 CUPCX211 CUPCX223 CUPCX253 CUPCX256 CUPCX2M6 CUPCX21Z CUPCX22Z CUPCX25Z | Hydrophobic
plus
Carboxylic
Acid | CUCCX2L1 CUCCX211 CUCCX223 CUCCX253 CUCCX256 CUCCX2M6 CUCCX21Z CUCCX22Z CUCCX25Z | Hydrophobic
plus
Benzene-
-sulfonic
Acid | CUBCX2L1 CUBCX211 CUBCX223 CUBCX253 CUBCX256 CUBCX2M6 CUBCX21Z CUBCX22Z CUBCX25Z | Octadecyl
plus
Benzene-
-sulfonic
Acid | CUBCX3L1 CUBCX311 CUBCX323 CUBCX353 CUBCX356 CUBCX3M6 CUBCX31Z CUBCX32Z CUBCX35Z | 100
100
50
50
50
30
50
50
50 | | 50 mg/1 mL
100 mg/1 mL
200 mg/3 mL
500 mg/3 mL
500 mg/6 mL
1 g/6 mL
100 mg/10 mL
200 mg/10 mL
500 mg/10 mL | Hydrophobic
plus
N-2
Aminoethyl | CUPSA2L1
CUPSA211
CUPSA223
CUPSA253
CUPSA256
CUPSA2M6
CUPSA21Z
CUPSA21Z
CUPSA25Z | Octadecyl
plus
N-2
Aminoethyl | CUPSA3L1
CUPSA311
CUPSA323
CUPSA353
CUPSA356
CUPSA3M6
CUPSA31Z
CUPSA32Z
CUPSA35Z | Hydrophobic
plus
Quaternary
Amine | CUQAX2L1
CUQAX211
CUQAX223
CUQAX253
CUQAX256
CUQAX2M6
CUQAX21Z
CUQAX21Z
CUQAX25Z | Hydrophobic
plus
Aminopropyl | CUNAX2L1
CUNAX211
CUNAX223
CUNAX253
CUNAX256
CUNAX2M6
CUNAX21Z
CUNAX21Z
CUNAX25Z | 100
100
50
50
50
50
30
50
50 | # Sample Prep - Solid Phase Extraction UCT Styre Screen® Polymeric Resign columns Styre Screen® extraction columns contain an ultra clean, highly cross-linked styrene and divinylbenzene copolymer sorbent that is functionalized with both a reverse phase, hydrophobic component and a strong cation exchanger. High & reproducible recoveries for acidic, neutral and basic compounds are achievable with a single column. The Styre Screen® particles have an average particle size of 30 microns and a
very high analyte capacity making them ideal for standard solid phase extraction applications. The increased analyte capacity means that less sorbent bed mass is needed which results in faster flow rates and less solvent use. Higher throughput and less solvent waste disposal translate into significant savings in both time and money. In addition, no conditioning steps are required for most drugs of abuse applications. ## **Advantage** - No conditioning steps - Copolymer allows for extraction of acids, neutrals and bases - High and reproducible recoveries - Clean extractions - Highly cross-linked styrene/divinylbenzene polymer - Reduction in sorbent mass - Faster flow rates - pH stable (1 to 14) - Reduction in solvent use - High sorbent capacity - Methods for NIDA/SAMHSA 5 Drugs | Weight /Vol. | Sorbent | P/N | Application | Qty | |--|-------------------------------------|----------------------------------|---|-----------------| | 30 mg/1 mL
30 mg/3 mL
50 mg/6 mL | DBX - Benzenesulfonic
Acid + C18 | SSDBX031
SSDBX033
SSDBX056 | Dual functionality for weak acids and hydrophobic compounds. | 100
50
50 | | 30 mg/1 mL
30 mg/3 mL
50 mg/6 mL | DVB - Polystyrene
Divinylbenzene | SSDBX031
SSDBX033
SSDBX056 | n.a.
n.a.
n.a. | 100
50
50 | | 30 mg/1 mL
30 mg/3 mL
50 mg/6 mL | BCX - Reverse Phase | SSBCX031
SSBCX033
SSBCX056 | Scavenger for amines, alcohols and other nucleophiles. | 100
50
50 | | 30 mg/1 mL
30 mg/3 mL
50 mg/6 mL | C18 -Reverse Phase | SSC18031
SSC18033
SSC18056 | Removes hydrophobic impurities, de-salting and purification of hydrophobic compounds. | 100
50
50 | | 30 mg/1 mL
30 mg/3 mL
50 mg/6 mL | CCX - Carboxylic Acid | SSCCX031
SSCCX033
SSCCX056 | Scavenger for strong anions (Quaternary amines or metals) | 100
50
50 | | 30 mg/1 mL
30 mg/3 mL
50 mg/6 mL | QAX - Quaternary Amine | SSQAX031
SSQAX033
SSQAX056 | "Removes large or more hydrophobic compounds." | 100
50
50 | ## **UCT Enviro-Clean® - Universal cartridges** The Enviro-Clean® Universal Cartridge is the choice of modern contract labs. This inexpensive, easy to use cartridge provides consistent extractions with clean blanks. Built in flow control allows for consistent flow rates. Enviro-Clean® sorbents UCT polypropylene, and PTFE frits offer a clean blank with every batch. Designed for the environmental lab, the cartridge is made to handle large volumes of waste water. An optional bottle holder is available for continuous feed from Boston Round and wide mouth bottles. SPE-DEX® is a registered trademark of Horizon Technology, Inc. | Product Name | P/N | Weight /Vol. | Description / Application | Qty | |------------------------|-----------------|---------------|---|-----| | UNIVERSAL C18 | ECUNIC18 | 1100 mg/83 mL | 1100 mg of endcapped C18 for pesticides, PCBs and a large assortment of applications. | 8 | | UNIVERSAL 525 | ECUNI525 | 1500 mg/83 mL | 1500 mg of our special C18 blend. This cartridge is specifically designed for EPA Method 525. | 8 | | UNIVERSAL PAH / DRO | ECUNIPAH | 2000 mg/83 mL | 2000 mg of C18 specifically designed for PAH extraction. | 8 | | UNIVERSAL OIL & GREASE | ECUNIOAG | 4000 mg/83 mL | 4000 mg of large particle C18 with an assortment of PE frit filters. No more liquid/liquid emulsions or clogged disks. | 15 | The cartridge will fit all standard manifolds and disk manifolds with adapter. ## **UCT dispersive SPE - "QuEChERS"** Quick, Easy, Cheap, Effective, Rugged and Safe Approach for determining pesticide residues in fruits, vegetables and other foods. The QuEChERS method is gaining in popularity around the world as the method of choice for food testing. The QuEChERS method offers the advantages of high recoveries, accurate results, high sample throughput, low solvent and glassware usage (no chlorinated solvents), less labor and bench space and lower reagent costs. Organic acids and other potential contaminants are removed during the cleanup process. UCT provides a variety of QuEChERS products containing primary secondary amine (PSA), C18, magnesium sulfate anhydrous and graphitized carbon black. These products are used in the method's clean-up step. Bulk, pre-cleaned magnesium sulfate anhydrous is available for the extraction part of the method. PSA is used to remove various polar organic acids, polar pigments, some sugars and fatty acid co-extractables from QuEChERS extracts. Combined with C18, samples containing less than 1% lipids can be cleaned of most lipids and sterols. Graphitized carbon is used to remove sterols and pigments such as chlorophyll. The downside to carbon is its ability to retain planar molecules. Schenck and Vega (April 2001) reported that 3/1 acetone: toluene performed well at eluting many compounds from carbon. | P/N | Description | Oh. | |--------------|---|-----| | P/N | Description | Qty | | CUMPSCB2CT | 2 mL micro-centrifuge tubes with 150 mg Anhydrous Magnesium Sulfate,50 mg PSA & 50mg Carbon | 100 | | CUMPS2CT | $2~\mathrm{mL}$ micro-centrifuge tubes with 150 mg Anhydrous Magnesium Sulfate, 50 mg PSA | 100 | | CUMPSC18CT | 2 mL micro-centrifuge tubes with 150 mg Anhydrous Magnesium Sulfate, 50 mg PSA & 50 mg endcapped C18 | 100 | | ECMPSCB15CT | $15~\mathrm{mL}$ centrifuge tubes with 900 mg Anhydrous Magnesium Sulfate, $300~\mathrm{mg}$ PSA $\&50~\mathrm{mg}$ endcapped C18 | 50 | | ECMPSC1815CT | 15 mL centrifuge tubes with 900 mg Anhydrous Magnesium Sulfate, 300 mg PSA $\&$ 150 mg endcapped C18 | 50 | | ECPSACB6 | 6 mL columns with 400 mg PSA on bottom, 200 mg Graphitized Carbon-Black on top, separated by a Teflon frit* | 30 | | ECPSACB256 | 6 mL columns with 250 mg Graphitized Carbon on top, 500 mg PSA on the bottom, separated with a Teflon frit* | 30 | | ECPSACB506 | 6 mL columns with 500 mg Graphitized Carbon on top, 500 mg PSA on the bottom, separated with a Teflon frit* | 30 | | ECMSSA50CT | 50 mL PP centrifuge tube with 6 g Anhydrous Magnesium Sulfate, 1.5 g Anhydrous Sodium Acetate | 250 | | ECMSSC50CT | 50 mL PP centrifuge tube with 4 g Anhydrous Magnesium Sulfate, 1 g NaCl | 250 | ## **Example of procedure** - 1. Transfer 15 g of homogenized sample into a 50 ml FEP centrifuge tube. - 2. Add 15 ml of 1% acetic acid in acetonitrile, 1.5 g sodium acetate anhydrous, 6 g of UCT magnesium sulfate anhydrous and an internal standard. - 3. Shake vigorously for 1 minute. - 4. Centrifuge for 3 minutes at 3700 rpm. - 5. Transfer an aliquot of the supernatant to the UCT product. - 6. Shake for 1 minute. - 7. Centrifuge for 3 minutes at 3700 rpm. - 8. Analyze. - * Products available with Polyethylene or Teflon frits. Choice depends application and price requirements. #### **UCT Enviro-Clean® columns** #### Polypropylene and Inert Glass Extraction columns Enviro-Clean® solid phase extraction columns are designed especially for the isolation and separation of environmental analytes such as pesticides, herbicides, polyaromatic hydrocarbons, polychlorinated biphenyls and other environmentally related compounds. Enviro-Clean® offers a selection of high quality solid phase extraction columns geared to support the environmental chemist with a very broad range of analytical applications. The most important function of the solid phase extraction column for the environmental chemist is the clean separation of an analyte from a variety of compounds. An important function of the extraction column is that it will concentrate a low level of analyte from large samples for accurate analysis. When evaluating analyte extraction or separation, Enviro-Clean® offers nonpolar, polar, ion-exchange and copolymeric phases for application in the environmental laboratory. #### **Hydrophobic Extraction Columns** Non-polar phases are often referred to as hydrophobic and function by the interactions of the carbon-hydrogen bond of the analyte and the sorbent. C18 is the most widely used of these phases. EPA approved methods for analyzing organics in drinking water specify the C18 hydrophobic phase. This method requires that large sample volumes (liters) be analyzed which utilizes the compound concentration function of the hydrophobic sorbent. | Weight /Vol. | Sorbent | Endcapped | Unendcapped | Sorbent | Endcapped | Unendcapped | Sorbent | Endcapped | Unendcapped | Qty | |---|------------|--|--|-------------|--|--|------------|--|--|--| | 50 mg/1 mL
100 mg/1 mL
200 mg/3 mL
500 mg/3 mL
500 mg/6 mL
1000 mg/6 mL
100 mg/10 mL
200 mg/10 mL
500 mg/10 mL
2000 mg/15 mL | C2, Ethyl | EEC021L1
EEC02111
EEC02123
EEC02153
EEC02156
EEC021M6
EEC0211Z
EEC0212Z
EEC0215Z
EEC0215Z |
EUC021L1
EUC02111
EUC02123
EUC02153
EUC02156
EUC021M6
EUC0211Z
EUC0212Z
EUC0215Z
EUC0215Z | C4, n-Butyl | EECN41L1
EECN4111
EECN4123
EECN4153
EECN4156
EECN41M6
EECN411Z
EECN412Z
EECN415Z
EECN412M15 | EUCN41L1
EUCN4111
EUCN4123
EUCN4153
EUCN4156
EUCN41M6
EUCN411Z
EUCN412Z
EUCN415Z
EUCN415Z | C6, Hexyl | EEC061L1
EEC06111
EEC06123
EEC06153
EEC06156
EEC061M6
EEC0611Z
EEC0612Z
EEC0615Z
EEC0612M15 | EUC061L1
EUC06111
EUC06123
EUC06153
EUC06156
EUC061M6
EUC0611Z
EUC0612Z
EUC0615Z
EUC0612M15 | 100
100
50
50
50
30
50
50
50
50 | | 50 mg/1 mL
100 mg/1 mL
200 mg/3 mL
500 mg/3 mL
500 mg/6 mL
100 mg/6 mL
100 mg/10 mL
200 mg/10 mL
200 mg/15 mL | C3, Propyl | EECN31L1
EECN3111
EECN3123
EECN3153
EECN3156
EECN31M6
EECN311Z
EECN312Z
EECN315Z | EUCN31L1
EUCN3111
EUCN3123
EUCN3153
EUCN3156
EUCN31M6
EUCN311Z
EUCN312Z
EUCN312Z
EUCN315Z | C5, Pentyl | EEC051L1
EEC0511
EEC05123
EEC05153
EEC05156
EEC051M6
EEC0511Z
EEC0512Z
EEC0515Z
EEC0512M15 | EUC051L1
EUC05111
EUC05123
EUC05153
EUC05156
EUC051M6
EUC0511Z
EUC0512Z
EUC0515Z
EUC0515Z | C7, Heptyl | EEC071L1
EEC07111
EEC07123
EEC07153
EEC07156
EEC071M6
EEC0711Z
EEC0712Z
EEC0715Z
EEC0715Z | EUC071L1
EUC07111
EUC07123
EUC07153
EUC07156
EUC071M6
EUC0711Z
EUC0712Z
EUC0715Z
EUC0715Z | 100
100
50
50
50
30
50
50
50
50 | ## **UCT Enviro-Clean® columns** ## JCT ## **Hydrophobic Extraction Columns** | Weight /Vol. | Sorbent | Endcapped | Unendcapped | Sorbent | Endcapped | Unendcapped | Sorbent | Endcapped | Unendcapped | Qty | |---|-------------|---|--|-------------------|--|--|------------|--|--|--| | 50 mg/1 mL
100 mg/1 mL
200 mg/3 mL
500 mg/3 mL
500 mg/6 mL
1000 mg/6 mL
100 mg/10 mL
200 mg/10 mL
500 mg/10 mL
2000 mg/15 mL | C8, Octyl | EEC081L1
EEC08113
EEC08153
EEC08156
EEC081M6
EEC0811Z
EEC0812Z
EEC0815Z
EEC0815Z | EUC081L1
EUC08111
EUC08123
EUC08153
EUC08156
EUC081M6
EUC0811Z
EUC0812Z
EUC0815Z | C12,
nDodecyl | EEC121L1
EEC12111
EEC12123
EEC12153
EEC12156
EEC121M6
EEC1211Z
EEC1212Z
EEC1215Z
EEC1215Z | EUC121L1
EUC12111
EUC12123
EUC12153
EUC12156
EUC121M6
EUC1211Z
EUC1212Z
EUC1215Z
EUC1215Z | Cyclohexyl | EECYH1L1
EECYH111
EECYH123
EECYH153
EECYH156
EECYH1M6
EECYH11Z
EECYH12Z
EECYH15Z
EECYH15Z | EUCYH1L1
EUCYH111
EUCYH123
EUCYH153
EUCYH156
EUCYH1M6
EUCYH11Z
EUCYH12Z
EUCYH15Z
EUCYH15Z | 100
100
50
50
50
50
50
50
50
50
50 | | 50 mg/1 mL
100 mg/1 mL
200 mg/3 mL
500 mg/3 mL
500 mg/6 mL
1000 mg/6 mL
100 mg/10 mL
200 mg/10 mL
500 mg/10 mL
200 mg/15 mL | C10, nDecyl | EEC101L1
EEC10111
EEC10123
EEC10153
EEC10156
EEC101M6
EEC1011Z
EEC1012Z
EEC10115Z
EEC1012M15 | EUC101L1
EUC10111
EUC10123
EUC10153
EUC10156
EUC101M6
EUC1011Z
EUC1012Z
EUC1015Z
EUC1015Z | C18,
Octadecyl | EEC18111
EEC18123
EEC18153
EEC18156
EEC181M6
EEC1811Z
EEC1812Z
EEC1815Z
EEC1812M15 | EUC18111
EUC18123
EUC18153
EUC18156
EUC181M6
EUC1811Z
EUC1812Z
EUC1815Z
EUC1815Z | Phenyl | EEPHY1L1
EEPHY111
EEPHY123
EEPHY153
EEPHY156
EEPHY1M6
EEPHY11Z
EEPHY12Z
EEPHY15Z
EEPHY15Z | EUPHY1L1
EUPHY113
EUPHY153
EUPHY156
EUPHY1M6
EUPHY11Z
EUPHY12Z
EUPHY15Z
EUPHY15Z | 100
100
50
50
50
30
50
50
50
50 | ## **Hydrophilic Extraction Columns** **Polar or hydrophilic** phases function by hydrogen bonding, pipi and dipole-dipole interaction. Ion exchange interactions occur between the sorbent and the analyte of opposite charge. Enviro-Clean® sorbents are available in both cation or anion exchangers exhibiting both weak and strong characteristics. Copolymeric phases offer a new approach to the environmental analyst by providing very clean extracts and high compound recovery. Dual functionalities, hydrophobic plus ion-exchange or polar allow a higher degree of selectivity than was previously possible. Analytes retained by multiple mechanisms can be washed by disrupting only one mechanism. Careful selection of the solvent strength results in a greater removal of chromatographic contamination. | Weight /Vol. | Qty | P/N | |---------------|-----|-------------| | 50 mg/1 mL | 100 | EUCARB1L1 | | 100 mg/1 mL | 100 | EUCARB111 | | 200 mg/3 mL | 50 | EUCARB123 | | 500 mg/3 mL | 50 | EUCARB153 | | 200 mg/6 mL | 50 | EUCARB126 | | 500 mg/6 mL | 50 | EUCARB156 | | 1000 mg/6 mL | 30 | EUCARB1M6 | | 100 mg/10 mL | 50 | EUCARB11Z | | 200 mg/10 mL | 50 | EUCARB12Z | | 500 mg/10 mL | 50 | EUCARB15Z | | 1000 mg/15 mL | 20 | EUCARB1M15 | | 2000 mg/15 mL | 20 | EUCARB12M15 | ## **Carbon-Graphitized** Application: Carbon supports have been used to isolate extremely polar organic compounds. They work by a hydrophobic mechanism with a high surface area and ion exchange. This interaction can happen in a wide range of polar and non-polar solvents. ## **UCT Enviro-Clean® columns** | Weight /Vol. | Sorbent | P/N | Sorbent | P/N | Sorbent | P/N | Sorbent | P/N | Qty | |---|---------------------|--|---------------------------------|--|-----------------------------------|--|-------------------|--|--| | 50 mg/1 mL
100 mg/3 mL
200 mg/3 mL
500 mg/6 mL
1000 mg/6 mL
100 mg/10 mL
200 mg/10 mL
500 mg/10 mL
2000 mg/15 mL | Unbonded
Silica | EUSIL1L1 EUSIL111 EUSIL123 EUSIL153 EUSIL156 EUSIL11M6 EUSIL11Z EUSIL12Z EUSIL12Z EUSIL12Z | Florisil [®] | EUFLS1L1 EUFLS111 EUFLS123 EUFLS153 EUFLS156 EUFLS1M6 EUFLS11Z EUFLS12Z EUFLS15Z EUFLS15Z | Alumina,
Acidic | EUALA1L1 EUALA123 EUALA153 EUALA156 EUALA1766 EUALA11Z EUALA11Z EUALA12Z EUALA15Z EUALA15Z | Alumina,
Basic | EUALB1L1 EUALB123 EUALB153 EUALB156 EUALB1M6 EUALB1MZ EUALB11Z EUALB12Z EUALB15Z EUALB15Z | 100
100
50
50
50
30
50
50
50
50 | | 50 mg/1 mL
100 mg/1 mL
200 mg/3 mL
500 mg/3 mL
500 mg/6 mL
1000 mg/6 mL
100 mg/10 mL
200 mg/10 mL
500 mg/10 mL
2000 mg/15 mL | Alumina,
neutral | EUALN1L1 EUALN111 EUALN123 EUALN153 EUALN156 EUALN1M6 EUALN11Z EUALN12Z EUALN15Z EUALN15Z | CN,
Cyanopropyl
Endcapped | EECNP1L1 EECNP111 EECNP123 EECNP153 EECNP156 EECNP11M6 EECNP11Z EECNP12Z EECNP15Z EECNP15Z | CN,
Cyanopropyl
Unendcapped | EUCNP1L1 EUCNP111 EUCNP123 EUCNP153 EUCNP156 EUCNP1M6 EUCNP11Z EUCNP12Z EUCNP15Z EUCNP15Z EUCNP15Z | Diol | EUDOL1L1 EUDOL111 EUDOL123 EUDOL153 EUDOL156 EUDOL1M6 EUDOL11Z EUDOL12Z EUDOL15Z EUDOL15Z EUDOL12M15 | 100
100
50
50
50
30
50
50
50 | ## Ion exchange and mixed mode Extraction Columns | Weight /Vol. | Sorbent | P/N | Sorbent | P/N | Sorbent | P/N | Sorbent | P/N | Qty | |--|-------------------------------|---|---|--|--|--|--|--|--| | 50 mg/1 mL
100 mg/1 mL
200 mg/3 mL
500 mg/3 mL
500 mg/6 mL
1000 mg/6 mL
100 mg/10 mL
200 mg/10 mL
500 mg/10 mL
200 mg/15 mL | Diethylamino | EUDAX1L1
EUDAX111
EUDAX123
EUDAX153
EUDAX156
EUDAX11M6
EUDAX11Z
EUDAX12Z
EUDAX15Z
EUDAX15Z | Aminopropyl | EUNAX1L1
EUNAX111
EUNAX123
EUNAX153
EUNAX156
EUNAX1M6
EUNAX11Z
EUNAX12Z
EUNAX15Z
EUNAX15Z | Quaternary
Amine
with Chloride
Counter Ion |
EUQAX1L1
EUQAX111
EUQAX123
EUQAX153
EUQAX156
EUQAX11Z
EUQAX11Z
EUQAX12Z
EUQAX15Z | Carboxylic
Acid | EUCCX1L1
EUCCX111
EUCCX123
EUCCX153
EUCCX156
EUCCX1M6
EUCCX11Z
EUCCX12Z
EUCCX15Z | 100
100
50
50
50
30
50
50
50
50 | | 50 mg/1 mL
100 mg/1 mL
200 mg/3 mL
500 mg/3 mL
500 mg/6 mL
1000 mg/6 mL
100 mg/10 mL
200 mg/10 mL
200 mg/10 mL
200 mg/15 mL | Benzene-
-sulfonic
Acid | EUBCX1L1 EUBCX111 EUBCX123 EUBCX153 EUBCX156 EUBCX1M6 EUBCX11Z EUBCX11Z EUBCX12Z EUBCX15Z EUBCX15Z | Hydrophobic
plus
Carboxylic
Acid | EUCCX2L1 EUCCX221 EUCCX223 EUCCX253 EUCCX256 EUCCX2M6 EUCCX21Z EUCCX22Z EUCCX25Z EUCCX25Z | Hydrophobic
plus
Benzene-
-sulfonic
Acid | EUBCX2L1 EUBCX221 EUBCX223 EUBCX253 EUBCX256 EUBCX2M6 EUBCX21Z EUBCX22Z EUBCX22Z EUBCX22Z | Hydrophobic
plus
Quaternary
Amine | EUQAX2L1
EUQAX211
EUQAX223
EUQAX253
EUQAX256
EUQAX2M6
EUQAX21Z
EUQAX22Z
EUQAX25Z
EUQAX25Z | 100
100
50
50
50
30
50
50
50 | A.83