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Combination of kernel PCA and linear support
vector machine for modeling a nonlinear
relationship between bioactivity and
molecular descriptors
Guang-Hui Fua, Dong-Sheng Caob, Qing-Song Xua*, Hong-Dong Lib

and Yi-Zeng Liangb

In this paper, a two-step nonlinear classification algorithm is proposed to model the structure–activity relationship
(SAR) between bioactivities and molecular descriptors of compounds, which consists of kernel principal component
analysis (KPCA) and linear support vector machines (KPCAR LSVM). KPCA is used to remove some uninformative
gradients such as noises and then exactly capture the latent structure of the training dataset using some new
variables called the principal components in the kernel-defined feature space. LSVM makes full use of the maximal
margin hyperplane to give the best generalization performance in the KPCA-transformed space. The combination of
KPCA and LSVM can effectively improve the prediction performance compared with the linear SVM as well as two
nonlinearmethods. Three datasets related to different categorical bioactivities of compounds are used to evaluate the
performance of KPCAR LSVM. The results show that our algorithm is competitive. Copyright � 2011 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Structure–activity relationship (SAR), a very important area of
chemometrics in the modern pharmaceutical industry, is urgently
needed for predicting absorption, distribution, metabolism,
excretion, toxicity (ADMET) properties to select lead compounds
for optimization at the early stage of drug discovery and to screen
drug candidates for clinical trials [1]. Much effort in recent SAR
studies has been focused on predicting pharmacokinetic and
toxicological properties that are collectively referred to as ADMET
of compounds. The aim of SAR analysis is to investigate the
relationship between chemical structure and biological activity.
At present, many SAR modeling tools have been successfully
employed to describe and build this relationship [2–7], for
example, Artificial Neural Networks (ANN), Decision Tree (DT),
Partial Least Squares (PLS), k-Nearest Neighbors (k-NN), Multiple
Linear Regression (MLR), Linear Discriminant Analysis (LDA) and
Support Vector Machine (SVM). Among all these modeling
methods, SVM has been one of the most popular modeling tools
in the SAR study due to its prediction performance in terms of
accuracy [7–12]. However, many researchers have pointed out
that SVM also suffered from the problem of feature subset
selection [13–15]. Typically, redundant descriptors may destroy
the pattern contained in the SAR and affect the prediction
accuracy of the model. So how to avoid such a situation and
improve the prediction ability for SVM is of practical importance
in the SAR study.
In this paper, we proposed a two-step nonlinear classification

algorithm to model the SAR between bioactivity and molecular

descriptors, which consists of kernel principal component
analysis (KPCA) and linear support vector machines (KPCAþ
LSVM). KPCA is used to remove some uninformative gradients
such as noises and then capture the latent structure of the
training dataset using some new variables called the principal
components in the kernel-defined feature space. The use of
LSVM is motivated by the construction of an optimal separating
hyperplane in the sense of maximizing the distance to the closest
point from either class. Three datasets related to different
categorical bioactivities of compounds are employed to evaluate
our method. These three datasets deal with human intestinal
absorption (HIA), P-glycoprotein (P-gp) substrates and Torsade
de Pointes (TdP), which are collectively related to the ADMET
properties of compounds. The use of KPCA for dimensionality
reduction or de-noising followed by LSVM computed on the
reduced kernel feature space has shown good results in
comparison with nonlinear SVM using the original data
representation in three SAR datasets.
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The remainder of the paper is organized as follows: Sections
2 and 3 introduce the idea of KPCA method and linear
support vector machines for classification, respectively. Section
4 describes our algorithm in detail. Section 5 introduces the
dataset employed in this paper and the data pretreatment.
Section 6 describes the experiments and the experimental results
of the performance. Finally, in Section 7, we summarize and
conclude the paper.

2. KERNEL PRINCIPAL COMPONENT
ANALYSIS (KPCA)

Assuming that the dataset contains n observations x1, x2, . . ., xn,
where xi (i¼ 1, 2, . . ., n) is a p-dimensional column vector. p is the
number of predictors of the dataset. Let

X ¼ x1; x2; � � �; xn½ �T (1)

be the predictor matrix and y ¼ ½y1; y2; � � �; yn�T be response.
For simplicity, we also assume that the data matrix has been
centralized, namely

Pn
i¼1 xi ¼ 0.

Primal principal component analysis (PCA) is a simple method
of extracting relevant information from complicated datasets.
With minimal additional effort, PCA provides a roadmap for how
to reduce a complex dataset to a lower dimension to reveal the
hidden, simplified structure that often underlies it. PCA technique
uses k (k� p) principal components to extract most information
from the dataset. It is often the case that a small number of
principal components is sufficient to account for most of the
structure in the data.
Let the covariance matrix of the dataset be:

C ¼ 1

n�1

Xn
i¼1

xix
T
i ¼ 1

n�1
XTX (2)

Principal component vjðj ¼ 1; 2; � � � ; pÞ can be computed by
solving the following eigenvalue problem:

lv ¼ Cv ¼ 1

n�1
XTXv (3)

where l� 0, v 6¼ 0. We can employ singular value decomposition
(SVD) technique to obtain p eigenvectors vj ( j¼ 1, 2, . . ., p), as
covariance matrix is positive semi-definite. Then one chooses first
k eigenvectors corresponding first k largest eigenvalues as
principal components, without loss of generality, denoted by vd

(d¼ 1, 2, . . ., k). The projection of an observation x2Rp on them is

vT1x; v
T
2x; � � �; vTdx

� �
which is the representation of x in the new coordinate system
based on these k orthogonal principal components. So PCA
actually is an orthogonal transformation of the coordinate system
in which we describe our data.
Note that PCA is just applied to exploring linear pattern

contained in the confusing dataset; KPCA is the natural
generalization of PCA for finding nonlinear cases [16–19]. The
basic idea of KPCA is to map the original dataset into some higher-
dimensional feature space where we use the PCA method to
establish linearmodel; however, this linearmodel established in the
feature space is nonlinear in the original input space (see Figure 1).
KPCA method firstly maps original data points {x1, x2, . . ., xn}

into a higher-dimensional feature space F by map f:

f : Rn ! F
xi ! f xið Þ (4)

Thus we get a new dataset ffðx1Þ; fðx2Þ; � � � ;fðxnÞg in F. The
choice of the map f aims to covert the nonlinear relations into
linear ones. But it needs not to know what f is.
We use the same denotations X and C to denote the predictor

matrix and covariance matrix, respectively.

X ¼ f x1ð Þ;f x2ð Þ; � � � ;f xnð Þ½ �T (5)

C ¼ 1

n�1

Xn
i¼1

f xið Þf xið ÞT ¼ 1

n�1
XTX (6)

By the same argument as PCA, assume the dataset has
centered.

Note that Cv ¼ 1
n�1

Pn
i¼1

fðxiÞfðxiÞT v ¼ 1
n�1

Pn
i¼1

ðfðxiÞ � vÞfðxiÞ, so
all eigenvectors lie in the span of the data points. Thus they can
be written as the linear combination of f(x1), f(x1),. . ., f(xn).
Namely,

v ¼
Xn
i¼1

aif xið Þ (7)

and by Equation (3):

l fðxiÞ � vð Þ ¼ fðxiÞ � Cvð Þ 8 i ¼ 1; 2; � � � ; n (8)

Figure 1. In the input space, the pattern (or relation) presented in the sample set is nonlinear. By mapping the sample set into feature space F later, the

new dataset presents linear relation, and the inner products in the feature space can be calculated via some kernel function in the original input space.
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Equation (7) tells that we should focus next on how to figure
out the coefficient vector a¼ [a1, a2, . . ., an]

T. By combining
Equations (7) and (8), the eigenvalue problem can be represented
by the following simple form:

l n�1ð Þa ¼ Ka (9)

where

K ¼ XXT (10)

is kernel matrix or Grammatrix; its each entry can be represented
as inner product form of two data points, namely,

Kij ¼ f xið ÞTf xj
� �

(11)

Kernel matrix plays a central role in the derivation of KPCA in
that the inner product is equivalent to a so-called kernel function.
Equation (3) also can be seen as an eigenvalue question of kernel
matrix K, whose eigenvalue and corresponding eigenvector
are l(n–1) and a, respectively. To normalize principal component
v, we need to scale a by factor 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðn�1Þp

. So Equation (7)
reads:

v ¼
Xn
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l n�1ð Þp aif xið Þ (12)

We do not care what f is, for the inner product can be
computed by a so-called kernel function, such as Gaussian kernel
function (radial basis function):

k x; yð Þ ¼ exp �dkx�yk2� �
(13)

Let Vk ¼ ½v1; v2; . . . ; vk � be the matrix that consists of k
principal components corresponding to first k largest eigen-
values. A new point x can be extracted by these k principal
components, namely

vTdf xð Þ ¼
Xn
i¼1

ad
i f xið ÞTf xð Þ d ¼ 1; 2; � � � ; kð Þ (14)

Remark: We cannot directly center the dataset in the feature
space, but the kernel matrix K̂ of the centered dataset can
be calculated by the kernel matrix K of noncentered case by the

following formula:

K̂ ¼ K�1nK�K1n þ 1nK1n (15)

where the matrix ð1nÞij ¼ 1=n for all i, j¼ 1, 2, . . ., n

3. LINEAR SUPPORT VECTOR MACHINE
(LSVM)

A detailed description of the theory of SVM can be easily found in
several excellent books and literature [20–22]. SVM was originally
developed by Vapnik et al. and has the capability to solve a
number of biological classification problems. SVM is based on
the structure risk minimization (SRM) principle from statistical
learning theory. For linearly separable cases, SVM performs
two classification tasks by constructing a hyperplane in the
multidimensional space to differentiate two classes with a
maximum margin (see Figure 2a). Given the supervised training
dataset D ¼ fðxi; yiÞgni¼1, the decision function of SVM can be
expressed in the following way:

f xið Þ ¼ sign wTxi þ b
� �

(16)

wherew is a vector of weights and b is the constant coefficient. In
the original feature space, the constraints for perfect classification
can be described as:

yi w
Txi þ b

� � � 1; i ¼ 1; 2; � � �; nð Þ (17)

The vector w and parameter b can be estimated by solving
the following quadratic optimization (QP) problem:

min
1

2
kwk2 (18)

subject to Equation (17).
In nonseparable case, slack variables, which are associated with

the misclassified compounds (see Figure 2b), are added to the
objective (18). Even though the erroneous classification cannot
be avoided, the effect of the misclassified compounds can be
reduced by means of these slack variables. Thus, Equation (18)

Figure 2. Support vector machines in linearly separable (a) and nonseparable (b) classification problems. The support vectors and margins are marked

by red circles and dot lines, respectively. In nonseparable case, negative margins are associated with the misclassified compounds.
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can further be re-expressed with a slack variable j:

min
1

2
kwk2 þ C

Xn
i¼1

ji (19)

s:t:
yi w

Txi�bð Þ � 1�ji
ji � 0; i ¼ 1; 2; � � �; nð Þ

�
(20)

By the Lagrange multiplier method, Equation (19) with
constraints (20) has following the dual form

min
1

2
aTDXXTDa�eTa (21)

s:t:
0 � ai � C i ¼ 1; 2; � � �; nð ÞPn
i¼1

yiai ¼ 0

8<
: (22)

where D is the n� n diagonal matrix with Dii¼ yi (i¼ 1, 2, . . ., n)
and a¼ [a1, a2, . . ., an]

T is the optimized Lagrange multiplier
vector. e is the column vector of ones in n-dimensional real
space. Equation (21) can be solved by means of QP methods.
The above SVM algorithm is called linear SVM (LSVM) constructed
in the original input space. A key property of LSVM is that
it attempts to seek a ‘safest’ hyperplane maximizing the sum of
squared distance between the hyperplane and all data points.
The ‘safest’ hyperplane can give the correct prediction as far as
possible when new samples arrive. That is, LSVM can define the
‘safest’ hyperplane to give the best generalization performance.
Such obtained hyperplane is often referred to as the maximal
margin hyperplane and is considered as the optimal hyperplane
(see Figure 3). LSVM can use the optimal hyperplane for a better
prediction performance compared with the other methods in
most cases.
Lagrangian support vector machine (LagSVM) [23] is the

generalization of the LSVM. It changes the 1-norm of slack
variable j to a 2-norm squared, which makes the constraint j� 0
redundant. In addition, it appends the term b2 to jjwjj2. Namely,

LagSVM is defined as the following objective:

min
1

2
kwk2 þ b2
� �þ C

Xn
i¼1

j2i (23)

s:t: yi w
Txi�b

� � � 1�ji (24)

The dual of the above problem is

min
1

2
aT I

C
þ D XXT þ eeT

� �
D

� 	
a�eTa (25)

s:t: ai � 0; i ¼ 1; 2; � � � ; nð Þ (26)

where I is the identity matrix. The LagSVM is an algorithm similar
to kernel ridge regression with constraints. The smaller the C is,
the greater the amount of de-noising [24].
Note that LSVM and LagSVM are easy to generalize nonlinear

form by replacing the term XXT in Equation (21) and XXTþeeT in
Equation (25) with a kernel matrix.

4. TWO-STEP NONLINEAR ALGORITHM

For nonlinear classification problems, the original SVMs firstly
project the input feature vectors into a high-dimensional feature
space using a kernel function k(xi, xj) and then perform the LSVM
algorithm in the kernel-defined feature space. However, as stated
above, the variables in the kernel feature spacemay include some
redundant information or noises, which may affect the prediction
accuracy of the established model. It is necessary to remove such
useless information before performing the LSVM algorithm. To
deal with such situation, a two-step nonlinear algorithm based on
the combination of KPCA and LSVM (KPCAþ LSVM) is proposed.
The two-step KPCAþ LSVM algorithm is given below (see
Figure 4).

4.1. Step 1: perform KPCA in input space

KPCA is carried out in the input space to extract the compact
underlying structure of the dataset. We can calculate its
orthonormal eigenvectors corresponding to first k largest
nonzero eigenvalues l1; l2; � � �; lk . So, the corresponding scores
can be computed as Tk ¼ fðXÞ � Vk and the original kernel matrix
can be re-constructed as K ¼ fðXÞfðXÞT � TkT

T
k . Here, k should

be further optimized by means of model selection techniques
such as cross-validation (CV).

4.2. Step 2: perform LSVM in KPCA-transformed space

The LSVM can be directly carried out by means of the
reconstructed kernel matrix in the KPCA-transformed space.
Here are two remarks.

(1) The KPCAþ LSVM method has a consistent framework with
the existing nonlinear SVMs. KPCAþ LSVM will be changed
into the original nonlinear SVMs when all the scores in
KPCA are used to perform the LSVM algorithm. However,
the KPCAþ LSVM algorithm is more flexible compared with
the existing nonlinear SVMs, especially when the variables in
the kernel-defined feature space include some redundant
information or noises.

Figure 3. Even when the training set is linearly separable, there does not

exist unique hyperplane to differentiate the two classes. However, the
support vector machine can define the ‘safest’ hyperplane to give the best

generalization performance (See the red line).
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(2) Primal PCA algorithm may destroy the underlying nonlinear
structure possessed by the training dataset. However, KPCA is
performed in the kernel-defined feature space and is more
likely to capture the underlying nonlinear structure of the
training dataset. So, KPCAþ LSVM is theoretically more
reasonable compared with commonly used SVM coupled
with PCA.

5. EXPERIMENTAL

5.1. Three datasets

As good pharmacokinetic properties are very important for
the drug candidates, there have been increasing efforts in
SAR research to address the prediction accuracy of the
pharmacokinetic properties of compounds, including ADMET.
For example, the studies of HIA [25,26], P-gp [27–29] and TdP [15]
focus on prediction of the ADMET and adverse drug effects. We
selected three datasets related to these pharmacokinetic and
pharmacodynamic properties for evaluating the performance of
our proposedmethod in the prediction of binary classes of SAR. A
brief description of the three datasets including the number of

compounds and their distribution into the active and inactive
classes as well as the molecule descriptors used for each dataset
is given in Table I. Here are more details for each dataset.

5.1.1. Dataset 1: HIA

The absorption of a drug compound through the human
intestinal cell lining is an important property for potential drug
candidates. There are 131 absorbable (HIAþ) and 65 nonabsorb-
able (HIA�) compounds that are classified by the ‘measured
absorption rate’ of 70% criterion. HIA comes from Xue et al. So do
the datasets P-gp and TDP described below. We employ the
original set of 159 descriptors provided by Xue et al. [15] for HIA,
P-gp and TdP sets to facilitate the comparison among different
studies. It includes 18 simple molecular properties, 28 molecular
connectivity and shape descriptors, 84 electrotopological
state descriptors, 13 quantum chemical properties as well as
16 geometrical properties.

5.1.2. Dataset 2: P-gp

P-gp is a transmembrane protein capable of transporting a
wide variety of anticancer drugs out of the cell, hence hampering
in chemotherapeutic treatment. An increased expression of
P-gp is associated with multidrug resistance (MDR). Many studies
have been undertaken to develop MDR-reversing compounds
with potential clinical significance. P-gp substrates (P-gpþ) are
reported as being transported by P-gp or P-gp MDR reversals
and nonsubstrates of P-gp (P-gp�) are those described as not
transportable by P-gp. A total of 116 substrates and 85
nonsubstrates of P-gp were collected in the dataset of P-gp.

5.1.3. Dataset 3: TdP

TdP is a potentially fatal polymorphic ventricular tachycardia. It may
also be induced by drugs that cause QT (Q wave and T wave)
prolongation. This effect is present in different categories of
therapeutic agents, for example, antihistamines, antidepressants or
macrolide antibiotics. The TdP dataset included 85 TdP-inducing
agents (TdPþ) and 276 noninducing compounds (TdP�).

5.2. Data pretreatment and performance evaluation

Among 159 predictors of three datasets, constant variables exist
and they are eliminated beforehand. Each predictor is also scaled
to have zero mean and unit variance. One of the advantages of
doing this is to bound the parameter d of the Gaussian kernel
function (see Equation (13)).
To evaluate the performance of a new algorithm, rigorous

validation is necessary for the SAR model development. Evidence
is presented that only models that have been validated by both
external and internal validation can be considered reliable and

Table I. The three datasets used in the work

Dataset Compound Classþ Class� Predictor set

HIA 196 131 65 159 descriptors include
molecular properties,
molecular connectivity,
shape descriptors, etc.

P-gp 201 116 85
TdP 361 85 276

Figure 4. The flow chart of the KPCAþ LSVM algorithm. T indicates the

scores matrix of KPCA. In the KPCAþ LSVM algorithm, there are some

important parameters that need to be further optimized.
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applicable for both external prediction and regulatory purpose
[30,31]. So we use external and internal validation to evaluate the
performance of the KPCAþ LSVM algorithm in this paper.
For external validation, the dataset is randomly split into training
set used for establishing the model and test set for external
validation. The training and test sets contain 80 and 20%
observations of the dataset, respectively. For internal validation,
5-fold CV is employed to estimate the accuracy of our model.
For 5-fold CV, the training set is randomly split into five roughly
equal-sized parts firstly, and then we fit the model to four parts
and calculate the prediction error of the fitted model with the
remainder part. The process is repeated five times so that every
part can be predicted as a validation set.
The parameters employed to evaluate the behavior in

this investigation are some commonly used ones in classifi-
cation problems: true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN). There are several criteria
for assessing the prediction performance including sensitivity
(SE) (the prediction accuracy of active compounds), specificity
(SP) (the prediction accuracy of inactive compounds), the
overprediction accuracy (R) and Matthews correlation coeffi-
cient (MCC), which are given by the following equations,
respectively:

SE ¼ TP

TPþ FN
(27)

SP ¼ TN

TNþ FP
(28)

R ¼ TPþ TN

TPþ FPþ TNþ FN
(29)

MCC ¼ TP� TN�FN� FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ TPþ FPð Þ TNþ FNð Þ TNþ FPð Þp (30)

5.3. Effects of model parameters

Gaussian kernel function (see Equation (13)), widely used in many
works due to its good performance, is employed to construct
the nonlinear mapping in our study. Thus, three important
parameters, k (the number of principal components), C (the
regularization parameter) as well as d (the width of Gaussian
kernel function), need to be further optimized in KPCAþ LSVM
algorithm. The parameter k, on the one hand, controls the
ability to reconstruct the dataset in the kernel-defined feature
space and hence measures the model complexity. On the
other hand, k restricts the de-noising ability; the smaller the k,
the greater the amount of de-noising. The choice of k depends on
the contribution to the response values. The parameter C is the
tradeoff between maximizing the margin and minimizing the
training error, so it affects both trained and predicted results.
Usually, k is an unknown parameter before modeling. If C is too
small, an insufficient stress will be placed on fitting the training
data. If C is too large, the algorithm will overfit the training data.
The width d of Gaussian kernel function is also crucial and should
be tuned carefully. A very small d can excessively model the local
structure of the training data and so may overfit the training data,
whereas a high d does not capture the underlying structure of the
training data and so may underfit the training data. Generally

speaking, these three parameters of KPCAþ LSVM are mutually
interrelated and should be optimized jointly by means of
model selection techniques such as CV, etc. In this paper, CV
method is employed and a multiparameter grid search strategy
is established to seek the optimal combination of model
parameters simultaneously. It should be pointed out that the
overprediction accuracy (R) (see Equation (29)) is employed to act
as the optimal criterion in searching the parameter grids.

6. RESULTS AND DISCUSSION

The prediction accuracies of KPCAþ LSVM for three SAR datasets
were primarily evaluated by means of 5-fold CV.
On the one hand, all model parameters are further optimized

by means of a grid search strategy. For the regularization
parameter C, we set eight values (C¼ 0.001, 0.01, 0.1, 0.5, 1, 10,
100, 200). The number of principal component k is set to range
from 1 to 50. For the width d of Gaussian kernel function, we firstly
estimate a suitable range and then set 10 values (d¼ 0.0001,
0.0002, 0.0003, 0.0005, 0.001, 0.005, 0.006, 0.01, 0.05, 0.1). Thus,
we can make use of 8� 50� 10¼ 4000 grid points to search for
the optimal combination of model parameters.
On the other hand, both internal and external validation are

used to evaluate the performance of the KPCAþ LSVM algorithm.
The linear relationship is built by LSVM algorithm for the three
SAR datasets. The prediction accuracy shows that it is wise to find
a nonlinear model for these SAR data. LagSVM [23] and SVM
[20,21] are also quoted for the purpose of comparisons. The
results of internal and external validation for three SAR datasets
are shown in Tables II and III, respectively.

6.1. Internal validation results for three SAR datasets

In internal validation, 5-fold CV method is used. The over-
prediction accuracy (R) acts as the optimal criterion in searching
the parameter grids. As shown in Table II, the prediction accuracy
of LSVM is low. The three SAR datasets given in section 5 do
not exist obvious linear structure with their responses. That the
results of three nonlinear methods (SVM, LagSVM and KPCAþ
LSVM) are better than that of LSVM further indicates that it is
more suitable to establish nonlinear model for them. Among
three nonlinear methods, KPCAþ LSVM achieves the best pre-
diction accuracy compared with SVM and LagSVM for each of the
three SAR datasets. In view of the average prediction ability on
four guidelines, KPCAþ LSVM wins 81.74 and 55.71% accuracy
on over prediction accuracy (R) and Matthews correlation
coefficient (MCC), respectively. These results are the best among
all the considered methods. For the specificity (SP), KPCAþ LSVM
obtains 73.00% accuracy, which is a bit low compared with
the highest point 73.27% which is obtained by LagSVM. SVM
achieves the best prediction accuracy of 78.76% on sensitivity
(SE) and 77.94% on KPCAþ LSVM.
The prediction ability of KPCAþ LSVM is superior to that

of SVM and LagSVM for all three SAR datasets. LagSVM is also
better than SVM. SVM does not consider the noises of the data in
training the classifier. However, both LagSVM and KPCAþ LSVM
have de-noising functions by controlling the regularization
parameter C and the number of principal components k,
respectively. The difference between them is as follows: The
parameter C of LagSVM is not only to control the de-noising
performance, but also to balance maximizing the margin of the
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classifier and minimizing the training error. So it is possible that the
de-noising function has to be sacrificed in order to achieve a better
tradeoff between themaximal margin andminimal training error. It
is more flexible for KPCAþ LSVM to control the de-noising ability
by using the number of principal components k. KPCAþ LSVM
can make full use of KPCA to carry out the dimensionality
reduction or de-noising in the kernel-defined feature space and
thus remarkably improve the prediction performance.

6.2. External validation results for three SAR datasets

In external validation, the dataset is randomly split into training
set and test set which contain 80 and 20% observations of the
dataset, respectively. Methods similar to those used in internal

validation are employed to evaluate our algorithm. Table III shows
the comparison results of the prediction accuracies on three
SAR datasets from linear SVM and three nonlinear classification
methods. The external validation results on LSVM again exhibit
the worst prediction performance.
Among three nonlinear methods of SVM, LagSVM and

KPCAþ LSVM, it seems that LagSVM outperforms. Particularly,
LagSVM wins the best prediction accuracy on the datasets HIA
and P-gp on the overprediction accuracy (R). However, on the
dataset TdP, KPCAþ LSVM achieves the over prediction accuracy
of 87.67%, which is the highest in comparison with SVM and
LagSVM. Table I shows that datasets HIA, P-gp and TdP contain
196, 201 and 361 observations, respectively. It seems that
LagSVM is more suitable for dealing with small sample problems.

Table III. External validation results on three SAR datasets

Datasets SP (%) SE (%) R (%) MCC (%) Parameters

a HIA 84.62 85.19 85.00 67.53
P-gp 70.59 70.83 70.73 40.92
TdP 82.14 58.82 76.71 38.82
Average 79.12 71.61 77.48 49.09

b HIA 69.23 96.30 87.50 70.88 C¼ 100, d¼ 0.0003
P-gp 58.82 91.67 78.05 54.67 C¼ 0.5, d¼ 0.002
TdP 92.86 58.82 84.93 55.48 C¼ 10, d¼ 0.002
Average 73.64 82.26 83.49 60.34

c HIA 84.62 100.00 94.87 88.64 C¼ 10, d¼ 0.1
P-gp 88.24 95.65 92.50 84.65 C¼ 100, d¼ 0.0005
TdP 98.18 41.18 84.72 53.19 C¼ 0.01, d¼ 0.05
Average 90.35 78.94 90.70 75.49

d HIA 76.92 96.30 90.00 76.80 C¼ 1, d¼ 0.01, k¼ 25
P-gp 82.35 79.17 80.49 60.78 C¼ 0.5, d¼ 0.005, k¼ 33
TdP 98.21 52.94 87.67 62.88 C¼ 10, d¼ 0.01, k¼ 27
Average 85.83 76.14 86.05 66.82

a: LSVM; b: SVM; c: LagSVM; d: KPCAþ LSVM.

Table II. Internal validation results on three SAR datasets

Datasets SP (%) SE (%) R (%) MCC (%) Parameters

a HIA 61.54 86.26 78.06 49.30
P-gp 61.18 72.41 67.66 33.64
TdP 85.87 62.35 80.33 46.95
Average 69.53 73.68 75.35 43.30

b HIA 61.54 87.79 79.08 51.40 C¼ 100, d¼ 0.002
P-gp 57.65 89.66 76.12 50.83 C¼ 1, d¼ 0.005
TdP 89.49 58.82 82.27 49.58 C¼ 100, d¼ 0.0005
Average 69.56 78.76 79.16 50.60

c HIA 58.46 91.60 80.61 54.43 C¼ 1, d¼ 0.01
P-gp 68.24 86.21 78.61 55.76 C¼ 1, d¼ 0.01
TdP 93.12 54.12 83.93 52.16 C¼ 0.5, d¼ 0.005
Average 73.27 77.31 81.05 54.12

d HIA 55.38 94.66 81.63 56.93 C¼ 10, d¼ 0.01, k¼ 27
P-gp 69.41 86.21 79.10 56.81 C¼ 1, d¼ 0.006, k¼ 38
TdP 94.20 52.94 84.49 53.38 C¼ 1, d¼ 0.01, k¼ 29
Average 73.00 77.94 81.74 55.71

a: LSVM; b: SVM; c: LagSVM; d: KPCAþ LSVM.
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In fact, LagSVM for nonlinear kernel, which does not make use
of the Sherman–Morrison–Woodbury identity, does not scale
up to very large problems [23]. KPCAþ LSVM is more competitive
while investigating data with many observations. That the
results of KPCAþ LSVM on internal validation (Table II) are
the best compared with SVM and LagSVM can indirectly support
this point. , as the samples are used repeatedly in 5-fold CV.

7. CONCLUSIONS

In this paper, we proposed a new strategy, KPCAþ LSVM, to carry
out a nonlinear classification problem for the SAR datasets. This
strategy is exactly consistent with the existing nonlinear SVM
algorithms when all the scores are used in the LSVM algorithm.
However, KPCAþ LSVM is more flexible and can obtain a better
prediction performance compared with the original SVMs,
especially when the variables in the kernel feature space
include some redundant information or noises. The results from
internal and external validations on three SAR datasets have
demonstrated that the use of KPCA for dimensionality reduction
or de-noising followed by LSVM computed on the reduced
kernel feature space can obtain a better prediction performance
in comparison with nonlinear SVMs using the original data
representation. LagSVM, another similar kernel algorithm with
de-noising function, is also quoted to further investigate the
de-noising performance. In view of both internal and external
validation, KPCAþ LSVM is better as least competitive compared
with LagSVM, especially when it comes to the large sample
problem. However, we also notice that the parameter of principal
components k is large to some extent at the optimal point.
Reducing the value of k requires further effort.
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